On the dynamic contact angle in simulation of impinging droplets with sharp interface methods
نویسنده
چکیده
Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian–Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace–Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.
منابع مشابه
Contact Angles of Droplets during Spread and Recoil after Impinging on a Heated Surface
T he contact angle of a droplet impinging upon a hot surface undergoes changes as the drop spreads and recoils. The motion of the liquid and the effect of evaporation from the edges of the drop affect the contact angle. The changes in the contact angle during spreading affect the spreading characteristics of the droplet upon impact. However, the models available in literature for the maximum sp...
متن کاملSimulations of impinging droplets with surfactant-dependent dynamic contact angle
Article history: Received 6 October 2014 Received in revised form 4 August 2015 Accepted 17 August 2015 Available online 24 August 2015
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کامل